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All unmarked corrections below refer to the original printing and have

already been included in the electronic version and in the corrected printing

of the book. Further corrections are marked by a ∗ on the left margin.

Chapter 2. Preliminaries

The point sets Λ in Definition 2.3 and Proposition 2.1 need to be discrete.

In the proof of Proposition 2.2 on page 16, it should read F ′ = F − F in the∗
penultimate line.

On page 18, in the sentence after Definition 2.8, the set A ⊂ X should be∗
closed.

In the sentence following Eq. (2.8) on page 24, A5 is the first non-Abelian∗
simple group in the series of alternating groups.

In the second paragraph of Section 2.3.3, it is tacitly assumed that all group∗
operations are continuous in the topology of G.

Chapter 4. Symbolic Substitutions and Inflations

In the second paragraph of page 82, the set P(X) is compact in the weak-∗
topology.

In the last paragraph on page 86, the brief explanation of proximality is,

strictly speaking, that of asymptotic proximality. This makes no difference

for the later use of the term in this volume.

On the right-hand side of the second identity in Eq. (4.14), one should better

write vi instead of v̄i. Likewise, in the first equation on page 103, one should

write vm instead of v̄m.

In the proof of Lemma 4.10 on page 106, one needs to use the maximum∗
instead of the minimum for both choices of i.

Chapter 5. Patterns and Tilings

In Definition 5.1, a pattern is meant to be a countable non-empty set of non-∗
empty subsets of R

d. Note that this use of the term ‘countable’ includes the

possibility of a finite set.

One consequence of Definition 5.8 is that the set {t | T ⊓ (t+K) = T ⊓K}
is relatively dense in R

d.



Figure 1. The Ammann–Beenker tiling of Figure 6.41 redrawn.

Chapter 6. Inflation Tilings

In Figure 6.41 on page 236 (undecorated Ammann–Beenker tiling), a spurious

line appeared in some of the squares in print. The correct figure is reproduced

below for convenience.

Chapter 8. Fourier Analysis and Measures

The function f in line 4 of Section 8.1 should also be assumed continuous.

For the explanation of Eq. (8.4), the reader may also want to consult

[Ebe49] Eberlein W.F. (1949). Abstract ergodic theorems and weak almost

periodic functions, Trans. Amer. Math. Soc. 67, 217–240.



[Ebe55] Eberlein W.F. (1955). The point spectrum of weakly almost periodic

functions, Michigan Math. J. 3, 137–139.

On page 319, three lines before Eq. (8.13), the set S is a Borel set. Similarly,

on page 322, the set A in the proof of Lemma 8.2 is Borel.

In line 5 of page 324, the set K must be non-empty.

The proof of Theorem 8.4 also shows that, if measures µn norm converge to

a measure µ, with µn ⊥ ν, then also µ ⊥ ν.

Chapter 9. Diffraction

Note that the diffraction patterns of Figure 9.2 use the same type of repre-

sentation as explained in the caption of Figure 9.6.

In Example 9.8, the amplitude A(k) depends on ε, through the ⋆-map of the∗
dual cut and project scheme.

Eq. (9.22) on page 357 should be completed as

(9.22) L⊛ := π(L∗) =
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The last equation before Corollary 9.4 on page 362 must read∗
η(z) = dens(L)

(

h ∗ rh
)

(z⋆),

where L is the embedding lattice introduced earlier. Consequently, the correct

formula for the amplitude in Corollary 9.4 is A(k) = dens(L) ph(−k⋆). This

is in agreement with Proposition 9.10 and Theorem 9.5 on page 385.

In the last equation of Theorem 9.4 on page 365, the integral should be over

W (rather than over H).

In the last sentence of Remark 9.16 on page 379, the relation on the Eberlein

convolution von δ
Z

with ω◦ can be extended to δ
Z

⊛ ω◦ = δ
Z

⊛ Ăω◦ = 1

3
δ

Z
.

Chapter 11. Random Structures

In Example 11.2 on page 436 and in Remark 11.2 on page 439, it might be

more adequate to use the term ‘measure-theoretic entropy’ instead of ‘metric

entropy’. Both terms are in use in the standard literature.

In Example 11.4, we illustrated two typical configurations of dimers as

. . . [+ −][− +][− +][+ −][− +][− +][− +][+ −][+ −] . . .

. . . [− +][+ −][+ −][− +][+ −][+ −][+ −][− +][− +][+ −] . . .

On page 441, the reference to Example 4.6 should refer to page 90 rather

than to page 89.



In the last equation on page 448, one should write O
(

|k|−1+ε
)

.

On page 454, it should read ‘(symplectically) self-dual’ rather than ‘symplec-

tic’ N×N matrices.

Appendix B. The Dynamical Spectrum

The function ψ in the third equation on page 487 should be a bounded Borel ∗
function, hence ψ ∈ L∞(T). The definition of ψ(U

S
) follows via an extension

of that for trigonometric polynomials.

References

Ref. [BG13] has appeared, and is now changed to

[BG14] Baake M. and Grimm U. (2014). Squirals and beyond: Substitution

tilings with singular continuous spectrum, Ergodic Th. & Dynam. Syst.

34, 1077–1102. arXiv:1205.1384.

The following reference has been added in Section 11.4.2:
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